324 research outputs found

    Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

    Get PDF
    We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L 2 -energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-dominated regimes. The theory is illustrated by numerical examples

    Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes

    Get PDF
    Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincar\'e inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes

    Mollification in strongly Lipschitz domains with application to continuous and discrete De Rham complex

    Get PDF
    We construct mollification operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are LpL^p stable for any real number p[1,]p\in[1,\infty], and commute with the differential operators \nabla, ×\nabla{\times}, and \nabla{\cdot}. We also construct mollification operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector fields. We use the mollification operators to build projection operators onto general H1H^1-, H(curl)\mathbf{H}(\text{curl})- and H(div)\mathbf{H}(\text{div})-conforming finite element spaces, with and without homogeneous boundary conditions. These operators commute with the differential operators \nabla, ×\nabla{\times}, and \nabla{\cdot}, are LpL^p-stable, and have optimal approximation properties on smooth functions

    Equilibrated tractions for the Hybrid High-Order method

    Get PDF
    We show how to recover equilibrated face tractions for the hybrid high-order method for linear elasticity recently introduced in [D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg., 2015, 283:1-21], and prove that these tractions are optimally convergent

    A nonintrusive Reduced Basis Method applied to aeroacoustic simulations

    Full text link
    The Reduced Basis Method can be exploited in an efficient way only if the so-called affine dependence assumption on the operator and right-hand side of the considered problem with respect to the parameters is satisfied. When it is not, the Empirical Interpolation Method is usually used to recover this assumption approximately. In both cases, the Reduced Basis Method requires to access and modify the assembly routines of the corresponding computational code, leading to an intrusive procedure. In this work, we derive variants of the EIM algorithm and explain how they can be used to turn the Reduced Basis Method into a nonintrusive procedure. We present examples of aeroacoustic problems solved by integral equations and show how our algorithms can benefit from the linear algebra tools available in the considered code.Comment: 28 pages, 7 figure

    Variants of the Empirical Interpolation Method: symmetric formulation, choice of norms and rectangular extension

    Full text link
    The Empirical Interpolation Method (EIM) is a greedy procedure that constructs approximate representations of two-variable functions in separated form. In its classical presentation, the two variables play a non-symmetric role. In this work, we give an equivalent definition of the EIM approximation, in which the two variables play symmetric roles. Then, we give a proof for the existence of this approximation, and extend it up to the convergence of the EIM, and for any norm chosen to compute the error in the greedy step. Finally, we introduce a way to compute a separated representation in the case where the number of selected values is different for each variable. In the case of a physical field measured by sensors, this is useful to discard a broken sensor while keeping the information provided by the associated selected field.Comment: 7 page

    Accurate and efficient evaluation of the a posteriori error estimator in the reduced basis method

    Full text link
    The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive to round-off errors. We propose herein an explanation of this fact. A first remedy has been proposed in [F. Casenave, Accurate \textit{a posteriori} error evaluation in the reduced basis method. \textit{C. R. Math. Acad. Sci. Paris} \textbf{350} (2012) 539--542.]. Herein, we improve this remedy by proposing a new approximation of the error bound using the Empirical Interpolation Method (EIM). This method achieves higher levels of accuracy and requires potentially less precomputations than the usual formula. A version of the EIM stabilized with respect to round-off errors is also derived. The method is illustrated on a simple one-dimensional diffusion problem and a three-dimensional acoustic scattering problem solved by a boundary element method.Comment: 26 pages, 10 figures. ESAIM: Mathematical Modelling and Numerical Analysis, 201
    corecore